RS Aggarwal Solutions Class 9 Chapter 14 Statistics Solution

EXERCISE 14F

Question 1:
For calculating the mean , we prepare the following table :

Daily wages (in Rs )

(Xi)

No of workers

(fi)

fixi

90

110

120

130

150

12

14

13

11

10

1080

1540

1560

1430

1500

\(\sum { { f }_{ i } } =60 \)

7110

RS Aggarwal Solutions Class 9 Chapter 14 Statistics 46.1

Question 2:
For calculating the mean , we prepare the following frequency table :

Weight (in kg)

(Xi)

No of workers

(fi)

fiXi

60

63

66

69

72

4

3

2

2

1

240

189

132

138

72

\(\sum { { f }_{ i } } =12 \)

771

RS Aggarwal Solutions Class 9 Chapter 14 Statistics 47.1

Question 3:
For calculating the mean , we prepare the following frequency table :

Age (in years)

(Xi)

Frequency

(fi)

fiXi

15

16

17

18

19

20

3

8

9

11

6

3

45

128

153

198

114

60

\(\sum { { f }_{ i } } =40 \)

698

RS Aggarwal Solutions Class 9 Chapter 14 Statistics 48.1

Question 4:
For calculating the mean , we prepare the following frequency table :

Variable

(Xi)

Frequency

(fi)

fiXi

10

30

50

70

89

7

8

10

15

10

70

240

500

1050

890

\(\sum { { f }_{ i } } =50 \) \(\sum { { f }_{ i } } { x }_{ i }=2750 \)

RS Aggarwal Solutions Class 9 Chapter 14 Statistics 49.1

Question 5:
We prepare the following frequency table :

(Xi)

(fi) fiXi
3

5

7

9

11

13

6

8

15

P

8

4

18

40

105

9P

88

52

\(\sum { { f }_{ i } } =41+p \) \(\sum { { f }_{ i } } { x }_{ i }=303+9p \)

RS Aggarwal Solutions Class 9 Chapter 14 Statistics 50.1
⇒ 303 + 9p = 8(41+p)
⇒ 303 + 9p= 328 + 8p
⇒ 9p – 8p = 328 -303
⇒ P=25
∴ the value of P=25

Question 6:
We prepare the following frequency distribution table:

(Xi)

(fi) fiXi
15

20

25

30

35

40

8

7

P

14

15

6

120

140

25p

420

525

240

\(\sum { { f }_{ i } } =50+p \) \(\sum { { f }_{ i } } { x }_{ i }=1445+25p \)

RS Aggarwal Solutions Class 9 Chapter 14 Statistics 51.1
⇒ 1445 + 25p = (28.25)(50+p)
⇒ 1445 + 25p = 1412.50 + 28.25p
⇒ -28.25p + 25p = -1445 + 1412.50
⇒ -3.25p = -32.5
⇒ \(\frac { 32.5 }{ 3.25 } \) = 10
∴ the value of p=10

Question 7:
We prepare the following frequency distribution table:

(Xi)

(fi) fiXi
8

12

15

P

20

25

30

12

16

20

24

16

8

4

96

192

300

24p

320

200

120

\(\sum { { f }_{ i } } =100 \) \(\sum { { f }_{ i } } { x }_{ i }=1228+24p \)

RS Aggarwal Solutions Class 9 Chapter 14 Statistics 52.1
⇒ 1228 + 24p = 1660
⇒ 24p = 1660-1228
⇒ 24p = 432
⇒ \(\frac { 432 }{ 24 } \) = 18
∴ the value of p =18

Question 8:
Let f1 and f2 be the missing frequencies.
We prepare the following frequency distribution table.

(Xi)

(fi) fixi

10

30

50

70

90

17

f1

32

f2

19

170

30f1

1600

70f2

1710

Total 120

3480 + 30f1 + 70f2

Here,
RS Aggarwal Solutions Class 9 Chapter 14 Statistics 53.1
Thus, f2 = 52 – f1…….(1)
Also,
RS Aggarwal Solutions Class 9 Chapter 14 Statistics 53.2
Substituting the value of f1 in equation 1, we have,
f2=52 – 28 = 24
Thus, the missing frequencies are f1 =28 and f2=24 respectively.

Question 9:
Let the assumed mean (A) =900

Weekly wages

(Xi)

No of workers

(fi)

di=(xi-A)

=xi-900

fi x di

800

820

860

900

920

980

1000

7

14

19

25

20

10

5

-100

-80

-40

0

20

80

100

-700

-1120

-760

0

400

800

500

\(\sum { { f }_{ i } } =100 \)

-880

RS Aggarwal Solutions Class 9 Chapter 14 Statistics 54.1

Question 10:
Let the assumed mean be A = 67

Height in cm (Xi)

No of plants

(fi)

di=(xi-A)

=(xi-67)

fi di
61

64

67

70

73

5

18

42

27

8

-6

-3

0

3

6

-30

-54

0

81`

48

100

\(\sum { { f }_{ i } } { d }_{ i }=45 \)

RS Aggarwal Solutions Class 9 Chapter 14 Statistics 55.1

Question 11:
Clearly, h=1. Let the assumed mean A=21

(Xi)

(fi) \({ u }_{ i }=\frac { { x }_{ i }-21 }{ 1 } \) fiui
18

19

20

21

22

23

24

170

320

530

700

230

140

110

-3

-2

-1

0

1

2

3

-510

-640

-530

0

230

280

330

Total

\(\sum { { f }_{ i } } =2200 \) \(\sum { { f }_{ i } } { u }_{ i }=-840 \)

RS Aggarwal Solutions Class 9 Chapter 14 Statistics 56.1

Question 12:
Clearly, h= (x2- x1)
=(600-200)=400
Let assumed mean A =1000

Height (in m)

(Xi)

No of villages

(fi)

\({ u }_{ i }=\frac { { x }_{ i }-1000 }{ 400 } \) fixui
200

600

1000

1400

1800

2200

142

265

560

271

89

16

-2

-1

0

1

2

3

-284

-265

0

271

178

48

Total

\(\sum { { f }_{ i } } =1343 \) \(\sum { { f }_{ i } } { u }_{ i }=-52 \)

RS Aggarwal Solutions Class 9 Chapter 14 Statistics 57.1