RS Aggarwal Solutions Class 9 Chapter 14 Statistics Solution
EXERCISE 14F
Question 1:
For calculating the mean , we prepare the following table :
Daily wages (in Rs ) (Xi) |
No of workers
(fi) |
fixi |
90 110 120 130 150 |
12
14 13 11 10 |
1080 1540 1560 1430 1500 |
\(\sum { { f }_{ i } } =60 \) |
7110 |
Question 2:
For calculating the mean , we prepare the following frequency table :
Weight (in kg) (Xi) |
No of workers
(fi) |
fiXi |
60 63 66 69 72 |
4
3 2 2 1 |
240 189 132 138 72 |
\(\sum { { f }_{ i } } =12 \) |
771 |
Question 3:
For calculating the mean , we prepare the following frequency table :
Age (in years) (Xi) |
Frequency
(fi) |
fiXi |
15 16 17 18 19 20 |
3
8 9 11 6 3 |
45
128 153 198 114 60 |
\(\sum { { f }_{ i } } =40 \) |
698 |
Question 4:
For calculating the mean , we prepare the following frequency table :
Variable (Xi) |
Frequency
(fi) |
fiXi |
10
30 50 70 89 |
7
8 10 15 10 |
70 240 500 1050 890 |
\(\sum { { f }_{ i } } =50 \) | \(\sum { { f }_{ i } } { x }_{ i }=2750 \) |
Question 5:
We prepare the following frequency table :
(Xi) |
(fi) | fiXi |
3
5 7 9 11 13 |
6
8 15 P 8 4 |
18 40 105 9P 88 52 |
\(\sum { { f }_{ i } } =41+p \) | \(\sum { { f }_{ i } } { x }_{ i }=303+9p \) |
⇒ 303 + 9p = 8(41+p)
⇒ 303 + 9p= 328 + 8p
⇒ 9p – 8p = 328 -303
⇒ P=25
∴ the value of P=25
Question 6:
We prepare the following frequency distribution table:
(Xi) |
(fi) | fiXi |
15
20 25 30 35 40 |
8
7 P 14 15 6 |
120 140 25p 420 525 240 |
\(\sum { { f }_{ i } } =50+p \) | \(\sum { { f }_{ i } } { x }_{ i }=1445+25p \) |
⇒ 1445 + 25p = (28.25)(50+p)
⇒ 1445 + 25p = 1412.50 + 28.25p
⇒ -28.25p + 25p = -1445 + 1412.50
⇒ -3.25p = -32.5
⇒ \(\frac { 32.5 }{ 3.25 } \) = 10
∴ the value of p=10
Question 7:
We prepare the following frequency distribution table:
(Xi) |
(fi) | fiXi |
8
12 15 P 20 25 30 |
12
16 20 24 16 8 4 |
96 192 300 24p 320 200 120 |
\(\sum { { f }_{ i } } =100 \) | \(\sum { { f }_{ i } } { x }_{ i }=1228+24p \) |
⇒ 1228 + 24p = 1660
⇒ 24p = 1660-1228
⇒ 24p = 432
⇒ \(\frac { 432 }{ 24 } \) = 18
∴ the value of p =18
Question 8:
Let f1 and f2 be the missing frequencies.
We prepare the following frequency distribution table.
(Xi) |
(fi) | fixi |
10 30 50 70 90 |
17
f1 32 f2 19 |
170 30f1 1600 70f2 1710 |
Total | 120 |
3480 + 30f1 + 70f2 |
Here,
Thus, f2 = 52 – f1…….(1)
Also,
Substituting the value of f1 in equation 1, we have,
f2=52 – 28 = 24
Thus, the missing frequencies are f1 =28 and f2=24 respectively.
Question 9:
Let the assumed mean (A) =900
Weekly wages (Xi) |
No of workers
(fi) |
di=(xi-A)
=xi-900 |
fi x di |
800 820 860 900 920 980 1000 |
7
14 19 25 20 10 5 |
-100
-80 -40 0 20 80 100 |
-700 -1120 -760 0 400 800 500 |
\(\sum { { f }_{ i } } =100 \) |
-880 |
Question 10:
Let the assumed mean be A = 67
Height in cm (Xi) |
No of plants
(fi) |
di=(xi-A)
=(xi-67) |
fi di |
61
64 67 70 73 |
5
18 42 27 8 |
-6
-3 0 3 6 |
-30 -54 0 81` 48 |
100 |
\(\sum { { f }_{ i } } { d }_{ i }=45 \) |
Question 11:
Clearly, h=1. Let the assumed mean A=21
(Xi) |
(fi) | \({ u }_{ i }=\frac { { x }_{ i }-21 }{ 1 } \) | fiui |
18
19 20 21 22 23 24 |
170
320 530 700 230 140 110 |
-3
-2 -1 0 1 2 3 |
-510 -640 -530 0 230 280 330 |
Total |
\(\sum { { f }_{ i } } =2200 \) | \(\sum { { f }_{ i } } { u }_{ i }=-840 \) |
Question 12:
Clearly, h= (x2- x1)
=(600-200)=400
Let assumed mean A =1000
Height (in m) (Xi) |
No of villages
(fi) |
\({ u }_{ i }=\frac { { x }_{ i }-1000 }{ 400 } \) | fixui |
200
600 1000 1400 1800 2200 |
142
265 560 271 89 16 |
-2
-1 0 1 2 3 |
-284 -265 0 271 178 48 |
Total |
\(\sum { { f }_{ i } } =1343 \) | \(\sum { { f }_{ i } } { u }_{ i }=-52 \) |